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Phase transitions in Euler fluids
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~Received 6 November 2000; published 24 September 2001!

Phase transitions in two-dimensional~2D! Euler fluids are studied using mean field theory~MFT! solutions
and Monte Carlo simulations. The MFT solutions show the possibility of first and second order phase transi-
tions and the critical pointlike behavior. The simulations of the dynamics of 2D vortex patches agree with the
MFT solutions over a wide range of parameters except at high energies where there are deviations between the
two.
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Euler equations constitute a group of area preserving
arametrization of two-dimensional fluid motions. The lo
time states of these motions are often dominated by the p
ence of large scale coherent structures formed via inv
cascade of energy. Since the time of Onsager@1#, statistical
mechanical arguments have been used to explain these
tures. The basic idea is to approximate the continous vo
ity field by a large but finite number of point vorticesN and
construct equilibrium measures within a bounded domainV.
In such domains, the entropyS attains a maxima for a finite
value of the total energyW5W̄, so that forW.W̄, the tem-
peratureT5(]S/]W)21 is formally negative. In this regime
the like sign vortices merge to give large vortex cluste
Though it was not proposed, Onsagar and others expe
this description to be valid in the thermodynamic limitN
→`. Frohlich and Ruelle@2#, who later examined the limi
N→` for a neutral vortex gas, showed that it was not
i.e., in the limitN→`, W̄→`. Since the entropy dominate
over the energy, all one obtains in this limit is a homogeno
structureless equilibrium with trivial correlations. Anoth
problem with the statistical mechanics of point vortices
that the description in terms of the canonical ensemble d
not exist below a certain temperature@3#. In fact some au-
thors@4# have argued that the microcanonical ensemble is
only appropriate ensemble for the vortex gas. This brings
to another peculiarity of the statistical mechanics of vortic
i.e., the nonequivalence of microcanonical and canonical
sembles.

Euler equations in two dimensions admit an infinite set
invariants that are smooth integrals of vorticityv over the
domainV. Part of the above stated difficulty is due to th
fact that the statistical mechanics of point vortices do
respect the invariance of all these integrals. Milleret al. @5#
and Robert and Sommeria@6# have recently shown that th
infinite set of integrals, sometimes called the ‘‘Casimirs
variants,’’ can be included in the statistical description
dividing the domainV into N small squares of areaa2 con-
taining a constant vorticityv. By permuting local exchange
of vorticity between nearby boxes such that no two vor
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patches overlap, these authors have constructed the cano
partition function that is a sum over a number of appropri
microstates. Some of the important consequences of this
proach follow: First, the canonical ensemble is now w
defined at all temperatures; second, by appropriate resca
of the inverse temperature, i.e,b5N b̄ whereb5T21 and
b̄ is independent ofN, the regime of negative temperatu
and the inhomogenous equilibria with nontrivial correlatio
is recovered in the limitN→`; third, the mean field theory
~MFT! that is the saddle point approximation to the cano
cal partition function becomes exact in the limit of vanishi
discretizationa→0, N→`. The assumption of separation o
scales is essential in this approach. Though one would ex
the exactness of MFT on account of the long range natur
Coulomb interaction, there has been some debate on
point recently. The existence of the limitb̄5 limN→`(b/N)
has also been questioned by Chorin@7#. By numerically con-
structing the canonical partition function for the case of tw
species neutral vortex gas, it has been shown that this l
exists only for moderate values of temperatures and t
energy W. One way to check the validity of the Miller
Robert mean field theory would be to numerically simula
the dynamics of an ensemble of vortex patches. Using
Metropolis algorithm this has been done by Milleret al. @5#
for one-dimensional~1D! solutions of single species non
neutral vortex gas. But this is not enough. As is well know
above a certain energy, the maximum entropy solutions
not share the symmetry of 1D solutions. Smith@8# and Smith
and O’Neil @9# have performed a Monte Carlo~MC! simula-
tion for a collection of point vortices confined in a cylindr
cal geometry (r ,u) to examine the 1D to 2D transition
Later, Chen and Cross@10# undertook a more detailed stud
of the MFT solutions. It was shown that in some parame
space, the bifurcation of 1D to 2D solutions is subcritic
giving rise to the possibility of discontinuous first ord
phase transitionlike jumps whenb is used as the contro
parameter.

In this paper our task is twofold. First, by employing a
efficient algorithm due to Turkington and Whittaker~TW!
@11# we construct MFT solutions for arbitraryW andb. This
algorithm is particularly useful for constructing MFT solu
tions with multiple spots. The phase-diagram of solutio
confirms the possibility of first order phase transitions sho
earlier by Chen and Cross. More importantly, these diagra
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show the existence of a ‘‘tricritical point’’~CP! in these sys-
tems. At this point, the second order phase transition cu
passes into the first order phase transition curve@12# and the
effective specific heat defined byCL5dW/dbuL is infinite.
First order phase transitions lead to the spontaneous fo
tion of crystalline patterns of tight spots of vorticity. The
crystalline patterns called, the ‘‘vortex crystals,’’ have r
cently been observed in the non-neutral plasma experim
@13#. Since the classic work of Thirring, Lynden-Bell, an
Wood @14#, such phase transitions involving clustering a
fragmentation in the gravitational system are known a
were discussed earlier. Also, the existence of the crit
pointlike behavior in a system like the present one, which
governed by long range forces, is interesting from the po
of view of ongoing debates about the nature of criticality
similar systems in 3D, i.e., ionic fluids~for details see Ref.
@15#!. In the second part of our paper, we perform extens
~MC! simulations of the dynamical evolution of an ensem
of vortex patches. The simulation has been performed w
different numbers of patches, runlengths, and grid sizes,
We use the Metropolis algorithm for canonical and t
Creutz algorithm for microcanonical simulations. Over
wide range of energies andb we find close agreement be
tween the simulation and MFT solutions. However, at su
ciently largeW we find deviations between the two solution

Following Miller et al. @5# and Robert and Sommeria@6#
we consider an incompressible Euler flow in a simply co
nected domainV of the plane (x,y). All physical quantities
are assumed dimensionless. The system is finite alongŷ with
boundary conditions aty56R/2 and periodic alongx̂ with
R as the periodic length. The evolution of this flow is d
scribed by velocity-vorticity equations given by

v t1v•“v50, v5“w3 ẑ, ¹2w52v. ~1!

Further, we consider an initial condition with two levels ofv
such that within a fractional areaa of total areaA, v5q,
while elsewherev50. Thus the total circulation isG
5qaA. The entropy functional for self-avoiding dynamics
S(v)52*dx @% ln %1(12%)ln(12%)#, where%5v(r )/q.
The statistical equilibrium of the flow under the constraint
total circulationG5*v dr , total energyW5 1

2 *vw dr , and
total linear momentumL5*yv dr can be obtained by
maximizing the entropy functionalS given earlier and is
given by @5,6#

v~r !5
q

11exp~qm1qbw1qg y!
, ¹2w52v, ~2!

wherem, b, and g are the Lagrange multipliers. For give
values ofG, W, L, a, and the boundary conditions forw
at y56R/2, w(x,y) and the values ofm, b, g can be ob-
tained by solving Eq.~2! along with the three constraints
These then are the mean field equations wherem,b,g have
been appropriately scaled withN @5#. In this form, the MFT
preserves all the infinite invariants of the Euler equations.
stated earlier, MFT is the saddle point approximation to
partition function that, as argued by Milleret al., becomes
exact in the limit of vanishing discretizationa→0. The vor-
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ticity distribution is stationary in a frame moving alongx̂
with a velocity g. For y-symmetric boundary condition
w(x,y56R/2)50, L50. Solutions of Eq.~2! are con-
structed using a scheme due to Turkington and Whitta
@11# that relies on the fact that forT,0, the entropy density
is a concave function while the energy density is a conv
function of%(r ). As a result, the iteration procedure quick
converges to the solution with the desired number of vorti
from an initial guess seeded with the same number of vo
ces. The solutions are constructed in a square box of siz
34. The variational problem is considered solved if t
~maximum! relative error between two successive iteratio
for %(r ),W, andL is of the order@125#31023. In Fig. 1
we plot the phase diagram inb-W space and show som
solutions for a given value ofL and for k0 ,k1, andk2 (kn
52pn/R, n50,1,2, . . . ). Out of thesek050 corresponds
to 1D ~y-dependent! solution, whilek1 and k2 are the 2D
solution with 1 and 2 maxima of the vorticity, respectivel
As shown in Fig. 1 and noted earlier@9# at W5W1, there is
a bifurcation from thek0 to thek1 branch. ForW.W1, the
k1 solution has higher entropy thank0 solution. At higher
energies there are bifurcations tok2 and higher branches~not
shown! that are local maximas of the entropy functional.
Fig. 2 we show thek3 solution with three spots of concen

FIG. 1. b-W plots from the MFT and simulations forG51, q
51, andL50.4375. The solid line is from MFT while ‘‘points’’
are from simulations as explained in the text.

FIG. 2. Then53 solution on the high energy branch forW
54.631023, L50.2, G50.2, andq58.
5-2
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PHASE TRANSITIONS IN EULER FLUIDS PHYSICAL REVIEW E64 046305
trated vorticity. Except for the cylindrical geometry, this pa
tern is very similar to one of the ‘‘vortex crystal’’ pattern
observed in the non-neutral plasma experiment@13#.

Next, we turn to a discussion of the nature of phase tr
sitions in these solutions. In Fig. 3 we plot thek5k0 andk1
branch for a number ofL values using the TW algorithm
From these diagrams the following picture emerges.

~i! First order phase transitions. For large values ofL
.Lc the specific heatCL is negative in some range ofW.
This is also the range ofL where the bifurcation is subcritica
whenb is used as the control parameter. Since, in the pre
model, the energy is bounded from above, theb-W curve
turns around andb→2` asW→Wmax. As expected, in the
range whereCL,0, the microcanonical and canonical e
semble differ from each other and, as noted by Chen
Cross @10#, this can be attributed to the first order pha
transition between 1D and 2D solutions. Since like sign v
tices normally repel each other, one may find the presenc
the first order phase transition in such system somewhat
prising. To understand this we recall Onsager’s observa
that the negative temperature regime is equivalent to a p
tive temperature regime with the opposite sign of the Ham
tonian and hence in this regime the like sign vortices attr
each other. This provides the long range attraction betw
the vortices~and is responsible forCL,0 in b-W curves!.
The incompressibility of patches, on the other hand, provi
the short range hard corelike repulsion. Hence it is not s
prising that such systems display first order phase transiti
In these transitions, concentrated spots of vorticity will
spontaneously formed. This has been observed in the ex
ments@13#.

~ii ! Second order phase transitions. For values ofL,Lc
in Fig. 3, the bifurcation ofn51 solution fromn50 solution
is supercritical or forward pitch fork whenb is used as the
control parameter. In these transitions, as one moves a
an isotherm ofL value,Lc , there is a continuous an
smooth transition from then50 to the n51 solutions. In
this sense, these transitions may be termed as the se
order phase transitions@10#.

FIG. 3. b-W curves for thek0 and k1 branches for various
values ofL; G50.2, andq58.
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~iii ! Tricritical point of continuous transitions. As is
known, the second order phase transition curve in the
plane segregates phases of different symmetry and h
does not terminate at some point. Rather, through this po
it passes into a curve of first order transitions. This poin
called the CP of second order phase transitions and is an
gous to an ordinary critical point@12#. This is exactly what
happens in the present case. Along the critical isothermL
5Lc in Fig. 3, second order phase transition curvesL
,Lc) pass into first order phase transition curves (L.Lc).
The Lc isotherm is locally flat at the point (bc ,Wc ,Lc),
where the specific heatCL5`. This is the tricritical point of
the k1 branch and at this point in theb-L plane~not shown
here#, the first and second order phase transition curves
meet. Earlier, Smith and O’Neil@9# have studied the 1D to
2D bifurcation for point vortices and noted that it has sign
tures of the critical behavior, i.e., large persistent fluctuatio
and correlation lengths. However, one lacuna in this s
nario, as noted by the authors themselves, is that on acc
of ‘‘Kraichnan’s collapse’’ this behavior exists only in th
microcanonical ensemble and not in the canonical ensem
This is an unsatisfactory feature. In the present case
situation is ratified. Because of the hard core the collaps
low temperature is stabilized and the critical behavior a
second order transitions exist in microcanonical as well
canonical ensembles. We will return to these points wh
discussing our simulation results.

In the second part of our work we have done extens
Monto Carlo simulations in order to check the validity
MFT results described above. For this purpose the domai
interestV of areaA5434 is divided into a large number o
small patches, out of whichN are filled. A move consists o
exchange of vorticity between two randomly chosen sit
Such interactions are regarded as long range collisions.
calculations are performed by constructing an expl
Green’s function for this geometry. For a given value ofW,
the initial condition is chosen by annealing. For the micr
canonical ensemble the system interacts with a ‘‘demo
whose energy and momentum are restricted to a nar
range around givenW andL. The value ofb is obtained by
fitting exponential functions to the frequency table of t
demon. The simulation is done with 256, 512, and 10
numbers of patches. The run lengths typically range fr
30 000 to 50 000 steps. As patches are of finite size, an
creaseN corresponds to the refinement of the grid. In t
microcanonical ensemble the lagrange multipliers are ca
lated for various runlengths 5000, 10 000, 15 000, a
20 000, etc. andN5256, 512, and 1024. In Fig. 1 we plotb
obtained from simulations withW for fixed L. The error bars
indicate fluctuations inb with run lengths, while the ‘‘point
and error bars’’ are forN 5 256, ‘‘circles and error bars’’ are
for N5512, and ‘‘diamonds’’ are forN51024. In general,
we find that there is nil, or very little, variation ofb values
with either N or run lengths. We find that it is adequate
useN5256 and run lengths of the order of 5000 MC step
We attribute this feature of our MC to~a! the long range of
the interaction,~b! the weak Coulomb singularity in 2D, an
~c! short range cutoff due to finite size of the patch~which
further weakens the singularity!. For our canonical simula-
5-3
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tion we employ a hybrid algorithm, i.e., microcanonical f
momentumL and Metropolis forb. For comparison with
MFT results we setb to values obtained from MFT an
obtain the corresponding mean energies^W& that is plotted
as W in Fig. 1. The canonical results are shown by poi
within the box.

Over a wide range of parameters we find a good ag
ment between MFT and simulations. In Fig. 3, if the syst
is taken along an isotherm withL,Lc , then both microca-
nonical and canonical simulations converge rapidly to
MFT solutions for all energies. In this sense, in our simu
tions one can go smoothly from 1D to 2D solutions as wo
be the case in the second order phase transitions.

As is evident from Fig. 1, at large energies we find dev
tions between simulation and MFT solutions. We have c
firmed that this discrepancy appears both in microcanon
and canonical simulations and is independent ofN and the
grid size. These deviations seem to confirm Chorin’s su
cion of the validity of MFT at largeW ~though he has dem
onstrated this for the case of neutral vortex gas!. These de-
viations cast doubts on the quantitative accuracy of the
order phase transitions predicted by MFT where one ph
lies on the high energy branch. Though we are unable
confirm it, we believe that our simulations will also exhib
Van der-Waal loops at highW. Due to deviations, these ma
04630
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be quantitatively different from the MFT loops. To see th
we recall that first order phase transitions require a sh
range repulsion and a long range attraction. Both these
tures are present in our simulation; as patches have finite
there is a short range hard corelike repulsion while in
negative temperature regime there is a long range attrac
between patches. However, as said earlier, with pract
problems related to available computing machines at our
posal, we are unable to do simulations in this regime. In a
case, this is an interesting situation. As is known in syste
with short range forces, the MFT gives a good description
the first order transition but fails near CP. In contrast, in
present system~which is governed by long range Coulom
force! it gives a good description of CP but fails to descri
first order transition accurately.

To summarize, using the TW algorithm, we have co
structed a phase diagram of solutions of the MFT. Th
solutions show the existence of the first and second o
phase transition and the critical pointlike behavior in so
parameter space. In the second part of our work we h
performed extensive MC simulations of the dynamics of
ensemble of vortex patches. Over a wide range of par
eters, MFT and simulations results agree with each ot
However, at largeW, there are deviations between the MF
and the simulation results.
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