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Phase transitions in Euler fluids
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Phase transitions in two-dimensior{adD) Euler fluids are studied using mean field the@4FT) solutions
and Monte Carlo simulations. The MFT solutions show the possibility of first and second order phase transi-
tions and the critical pointlike behavior. The simulations of the dynamics of 2D vortex patches agree with the
MFT solutions over a wide range of parameters except at high energies where there are deviations between the
two.

DOI: 10.1103/PhysReVvE.64.046305 PACS nunterd7.27.Jv, 47.32.Cc, 68.35.Rh

Euler equations constitute a group of area preserving regatches overlap, these authors have constructed the canonical
arametrization of two-dimensional fluid motions. The long partition function that is a sum over a number of appropriate
time states of these motions are often dominated by the pregicrostates. Some of the important consequences of this ap-
ence of large scale coherent structures formed via inversefoach follow: First, the canonical ensemble is now well
cascade of energy. Since the time of Onsddérstatistical defmeq at all temperatures; _second,_by appropriate rescaling
mechanical arguments have been used to explain these fe@f.the inverse temperature, if=N B whereg=T"* and
tures. The basic idea is to approximate the continous vortic8 is independent of, the regime of negative temperature
ity field by a large but finite number of point vorticésand  and the inhomogenous equilibria with nontrivial correlations
construct equilibrium measures within a bounded donfiin is recovered in the limiN—c; third, the mean field theory
In such domains, the entrogattains a maxima for a finite (MFT) that is the saddle point approximation to the canoni-
value of the total energW=W, so that forW>W, the tem-  cal partition function becomes exact in the limit of vanishing
peratureT = (9S/ W) ~ ! is formally negative. In this regime, discretizatiora—0, N—o. The assumption of separation of
the like sign vortices merge to give large vortex clustersscales is essential in this approach. Though one would expect
Though it was not proposed, Onsagar and others expectdde exactness of MFT on account of the long range nature of
this description to be valid in the thermodynamic limit ~ Coulomb interaction, there has been some debate on this
— . Frohlich and Ruellg2], who later examined the limit point recently. The existence of the lim@=limy_...(3/N)
N—oe for a neutral vortex gas, showed that it was not sohas also been questioned by Chdfih By numerically con-

i.e., in the limitN—, W—o. Since the entropy dominates Structing the canonical partition function for the case of two
over the energy, all one obtains in this limit is a homogenous$pecies neutral vortex gas, it has been shown that this limit
structureless equilibrium with trivial correlations. Another exists only for moderate values of temperatures and total
problem with the statistical mechanics of point vortices isenergy W. One way to check the validity of the Miller-
that the description in terms of the canonical ensemble dogsobert mean field theory would be to numerically simulate
not exist below a certain temperatUr@]. In fact some au- the dynamics of an ensemble of vortex patches. Using the
thors[4] have argued that the microcanonical ensemble is th&letropolis algorithm this has been done by Milkerral. [5]

only appropriate ensemble for the vortex gas. This brings uér one-dimensional1D) solutions of single species non-
to another peculiarity of the statistical mechanics of vorticespeutral vortex gas. But this is not enough. As is well known,
i.e., the nonequivalence of microcanonical and canonical er@bove a certain energy, the maximum entropy solutions do
sembles. not share the symmetry of 1D solutions. Snjifand Smith

Euler equations in two dimensions admit an infinite set ofand O’Neil[9] have performed a Monte CarlMC) simula-
invariants that are smooth integrals of vorticity over the  tion for a collection of point vortices confined in a cylindri-
domain(). Part of the above stated difficulty is due to the cal geometry (,6) to examine the 1D to 2D transition.
fact that the statistical mechanics of point vortices do not-ater, Chen and Cro440] undertook a more detailed study
respect the invariance of all these integrals. Mik¢ral. [5] of the MFT solutions. It was shown that in some parameter
and Robert and Sommeri&] have recently shown that the space, the bifurcation of 1D to 2D solutions is subcritical
infinite set of integrals, sometimes called the “Casimirs in-giving rise to the possibility of discontinuous first order
variants,” can be included in the statistical description byphase transitionlike jumps whef is used as the control
dividing the domain() into N small squares of are&’ con-  parameter.
taining a constant vorticity. By permuting local exchanges ~ In this paper our task is twofold. First, by employing an

of vorticity between nearby boxes such that no two vortexefficient algorithm due to Turkington and Whittak€FW)
[11] we construct MFT solutions for arbitral/ and 3. This

—_— algorithm is particularly useful for constructing MFT solu-

*Present address: Department of Electrical Engineering, Poharijons with multiple spots. The phase-diagram of solutions
University of Science and Technology?OSTECH, S. Korea. confirms the possibility of first order phase transitions shown
Email address: ganu@kitty.postech.ac.kr earlier by Chen and Cross. More importantly, these diagrams
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show the existence of a “tricritical point{CP) in these sys-
tems. At this point, the second order phase transition curve
passes into the first order phase transition cih@ and the
effective specific heat defined iy, =dW/dg|, is infinite.
First order phase transitions lead to the spontaneous forme
tion of crystalline patterns of tight spots of vorticity. These
crystalline patterns called, the “vortex crystals,” have re-
cently been observed in the non-neutral plasma experiment
[13]. Since the classic work of Thirring, Lynden-Bell, and
Wood [14], such phase transitions involving clustering and
fragmentation in the gravitational system are known and
were discussed earlier. Also, the existence of the critical
pointlike behavior in a system like the present one, which is
governed by long range forces, is interesting from the point
of view of ongoing debates about the nature of criticality in
similar systems in 3D, i.e., ionic fluiddor details see Ref.
[15]). In the second part of our paper, we perform extensive
(MC) simulations of the dynamical evolution of an ensemble FIG. 1. B-W plots from the MFT and simulations fdf=1, q
of vortex patches. The simulation has been performed with=1, andL=0.4375. The solid line is from MFT while “points”
different numbers of patches, runlengths, and grid sizes, et@re from simulations as explained in the text.
We use the Metropolis algorithm for canonical and the
Creutz algorithm for microcanonical simulations. Over aticity distribution is stationary in a frame moving aloig
wide range of energies angél we find close agreement be- With a velocity y. For y-symmetric boundary conditions
tween the simulation and MFT solutions. However, at suffi-¢(X,y=*R/2)=0, L=0. Solutions of Eq.(2) are con-
ciently largeW we find deviations between the two solutions. Structed using a scheme due to Turkington and Whittaker
Following Miller et al.[5] and Robert and Sommerjé] [11] that relies on the fact that far<0, the entropy density
we consider an incompressible Euler flow in a simply con-is a concave function while the energy density is a convex
nected domair) of the plane ,y). All physical quantities ~ function of ¢(r). As a result, the iteration procedure quickly
are assumed dimensionless. The system is finite atamigh converges to the solution with the desired number of vortices
boundary conditions ag=+R/2 and periodic along with from an initial guess seeded with the same number of vorti-
R as the periodic length. The evolution of this flow is de- ces. The solutions are constructed in a square box of size 4
scribed by velocity-vorticity equations given by X 4. The variational problem is considered solved if the
(maximum) relative error between two successive iterations
for o(r),W, andL is of the ordef1—5]x10 2. In Fig. 1
we plot the phase diagram i8-W space and show some
solutions for a given value df and forkg,kq, andk, (k,

~0.03 0.143

D

Further, we consider an initial condition with two levels«wf
such that within a fractional area of total areaA, w=q, =2mn/R, n=0,1,2 ...). Out oftheseky,=0 corresponds
while elsewherew=0. Thus the total circulation id" to 1D (y-dependentsolution, whilek; andk, are the 2D
=gaA. The entropy functional for self-avoiding dynamics is solution with 1 and 2 maxima of the vorticity, respectively.
S(w)=—fdx [oInpg+(1—0)In(1—p)], wherego=w(r)/q.  As shown in Fig. 1 and noted earligd] at W=W;, there is
The statistical equilibrium of the flow under the constraint ofa bifurcation from thek, to thek; branch. Foaw>W,, the
total circulationl' = [ dr, total energyW=3fw¢ dr,and k; solution has higher entropy thag solution. At higher
total linear momentumL=[yw dr can be obtained by energies there are bifurcationskpand higher branchegot
maximizing the entropy functiona$ given earlier and is shown that are local maximas of the entropy functional. In
given by|[5,6] Fig. 2 we show the&k; solution with three spots of concen-

witVv-Vo=0, V=qu><2, Vch= —w.

q
1+explqu+gBe+qy y)'

2
Vip=

w(r)= - w,

where u, B, and y are the Lagrange multipliers. For given
values ofl’, W, L, «, and the boundary conditions for
aty=*R/2, ¢(x,y) and the values oft, B, y can be ob-
tained by solving Eq(2) along with the three constraints.
These then are the mean field equations wherg, y have
been appropriately scaled with[5]. In this form, the MFT
preserves all the infinite invariants of the Euler equations. As
stated earlier, MFT is the saddle point approximation to the

O pax=3.964
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partition function that, as argued by Millat al, becomes
exact in the limit of vanishing discretizatiam— 0. The vor-

FIG. 2. Then=3 solution on the high energy branch fav
=4.6x10"%, L=0.2, '=0.2, andg=8.
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-15.5 (iii) Tricritical point of continuous transitionsAs is
known, the second order phase transition curve in the PT
plane segregates phases of different symmetry and hence
does not terminate at some point. Rather, through this point,
it passes into a curve of first order transitions. This point is
called the CP of second order phase transitions and is analo-
gous to an ordinary critical poifftL2]. This is exactly what
happens in the present case. Along the critical isotherm
=L, in Fig. 3, second order phase transition curvés (
<L.) pass into first order phase transition curvés>(.).
The L. isotherm is locally flat at the point&.,W,.,L.),
where the specific he@ =«. This is the tricritical point of
the k; branch and at this point in thé-L plane(not shown
herd, the first and second order phase transition curves will
meet. Earlier, Smith and O’NejP] have studied the 1D to
W 8 2D bifurcation for point vortices and noted that it has signa-
x 10 tures of the critical behavior, i.e., large persistent fluctuations
and correlation lengths. However, one lacuna in this sce-
nario, as noted by the authors themselves, is that on account
of “Kraichnan’s collapse” this behavior exists only in the
trated vorticity. Except for the cylindrical geometry, this pat- microcanonical ensemble and not in the canonical ensemble.
tern is very similar to one of the “vortex crystal” patterns This is an unsatisfactory feature. In the present case this
observed in the non-neutral plasma experinjé&sj. situation is ratified. Because of the hard core the collapse at

Next, we turn to a discussion of the nature of phase tranlow temperature is stabilized and the critical behavior and
sitions in these solutions. In Fig. 3 we plot tkeky andk;  second order transitions exist in microcanonical as well as
branch for a number of values using the TW algorithm. canonical ensembles. We will return to these points while
From these diagrams the following picture emerges. discussing our simulation results.

(i) First order phase transitionsFor large values ot In the second part of our work we have done extensive
>L. the specific hea€C, is negative in some range &f. Monto Carlo simulations in order to check the validity of
This is also the range @f where the bifurcation is subcritical MFT results described above. For this purpose the domain of
wheng is used as the control parameter. Since, in the preseimterest() of areaA=4x4 is divided into a large number of
model, the energy is bounded from above, BV curve  small patches, out of whicN are filled. A move consists of
turns around an@— — o asW—W,,,. As expected, in the exchange of vorticity between two randomly chosen sites.
range whereC, <0, the microcanonical and canonical en- Such interactions are regarded as long range collisions. The
semble differ from each other and, as noted by Chen andalculations are performed by constructing an explicit
Cross[10], this can be attributed to the first order phaseGreen’s function for this geometry. For a given valueVaf
transition between 1D and 2D solutions. Since like sign vorthe initial condition is chosen by annealing. For the micro-
tices normally repel each other, one may find the presence @fanonical ensemble the system interacts with a “demon”
the first order phase transition in such system somewhat suwhose energy and momentum are restricted to a narrow
prising. To understand this we recall Onsager’s observationange around givellV andL. The value off3 is obtained by
that the negative temperature regime is equivalent to a posfitting exponential functions to the frequency table of the
tive temperature regime with the opposite sign of the Hamil-demon. The simulation is done with 256, 512, and 1024,
tonian and hence in this regime the like sign vortices attrachumbers of patches. The run lengths typically range from
each other. This provides the long range attraction betweeB0 000 to 50 000 steps. As patches are of finite size, an in-
the vortices(and is responsible fo€, <0 in B-W curves.  creaseN corresponds to the refinement of the grid. In the
The incompressibility of patches, on the other hand, providesicrocanonical ensemble the lagrange multipliers are calcu-
the short range hard corelike repulsion. Hence it is not surlated for various runlengths 5000, 10000, 15000, and
prising that such systems display first order phase transition20 000, etc. andN =256, 512, and 1024. In Fig. 1 we plgt
In these transitions, concentrated spots of vorticity will beobtained from simulations witkV for fixed L. The error bars
spontaneously formed. This has been observed in the expeindicate fluctuations i8 with run lengths, while the “point
ments[13]. and error bars” are foN = 256, “circles and error bars” are

(ii) Second order phase transitianSor values ofL<L, for N=512, and “diamonds” are foN=1024. In general,
in Fig. 3, the bifurcation oh=1 solution fromn=0 solution ~ we find that there is nil, or very little, variation ¢ values
is supercritical or forward pitch fork whef is used as the with eitherN or run lengths. We find that it is adequate to
control parameter. In these transitions, as one moves alongseN=256 and run lengths of the order of 5000 MC steps.
an isotherm ofL value<L., there is a continuous and We attribute this feature of our MC t@) the long range of
smooth transition from th@=0 to then=1 solutions. In the interaction(b) the weak Coulomb singularity in 2D, and
this sense, these transitions may be termed as the secof®l short range cutoff due to finite size of the pafethich
order phase transitiof4.0]. further weakens the singularjtyFor our canonical simula-

—16.41

FIG. 3. B-W curves for thek, and k; branches for various
values ofL; I'=0.2, andq=8.
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tion we employ a hybrid algorithm, i.e., microcanonical for be quantitatively different from the MFT loops. To see this,
momentumL and Metropolis for3. For comparison with we recall that first order phase transitions require a short
MFT results we sefB to values obtained from MFT and range repulsion and a long range attraction. Both these fea-
obtain the corresponding mean energjég) that is plotted tures are present in our simulation; as patches have finite size
asW in Fig. 1. The canonical results are shown by pointsthere is a short range hard corelike repulsion while in the
within the box. negative temperature regime there is a long range attraction
Over a wide range of parameters we find a good agreehetween patches. However, as said earlier, with practical
ment between MFT and simulations. In Fig. 3, if the systemproblems related to available computing machines at our dis-
is taken along an isotherm with<L., then both microca- posal, we are unable to do simulations in this regime. In any
nonical and canonical simulations converge rapidly to thecase, this is an interesting situation. As is known in systems
MFT solutions for all energies. In this sense, in our simula-with short range forces, the MFT gives a good description of
tions one can go smoothly from 1D to 2D solutions as wouldthe first order transition but fails near CP. In contrast, in the
be the case in the second order phase transitions. present systeniwhich is governed by long range Coulomb
As is evident from Fig. 1, at large energies we find devia-force) it gives a good description of CP but fails to describe
tions between simulation and MFT solutions. We have confirst order transition accurately.
firmed that this discrepancy appears both in microcanonical To summarize, using the TW algorithm, we have con-
and canonical simulations and is independeniNadind the  structed a phase diagram of solutions of the MFT. These
grid size. These deviations seem to confirm Chorin’s suspisolutions show the existence of the first and second order
cion of the validity of MFT at largaV (though he has dem- phase transition and the critical pointlike behavior in some
onstrated this for the case of neutral vortex)gd$iese de- parameter space. In the second part of our work we have
viations cast doubts on the quantitative accuracy of the firgperformed extensive MC simulations of the dynamics of an
order phase transitions predicted by MFT where one phasensemble of vortex patches. Over a wide range of param-
lies on the high energy branch. Though we are unable teters, MFT and simulations results agree with each other.
confirm it, we believe that our simulations will also exhibit However, at largéV, there are deviations between the MFT
Van der-Waal loops at higiv. Due to deviations, these may and the simulation results.
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